
Towards the Munich Quantum Software Stack
Enabling Efficient Access and Tool Support for Quantum Computers

Martin Schulz
Chair of Computer Architecture and Parallel Systems

Technical University of Munich
Munich, Germany
schulzm@in.tum.de

Laura Schulz
QCT Department

Leibniz Supercomputing Centre
Garching, Germany

schulz@lrz.de

Martin Ruefenacht
QCT Department

Leibniz Supercomputing Centre
Garching, Germany

Martin.Ruefenacht@lrz.de

Robert Wille
Chair of Design Automation

Technical University of Munich
Munich, Germany

robert.wille@tum.de

Abstract—As quantum computing systems mature and move
from laboratories to production computing environments, corre-
sponding software stacks are becoming key for their successful
utilization. In particular, the expected use of quantum systems as
HPC accelerators requires a deep integration with the existing
and widely deployed HPC software stacks. Additionally, new
requirements such as dynamic compilation and new challenges
for tools and programming models must be considered. We tackle
these challenges by developing the Munich Quantum Software
Stack—a comprehensive initiative by the Munich Quantum Valley
to offer a flexible, efficient, and user-oriented software envi-
ronment. In this poster, we describe the core components and
workflows, and how they will enable this transformation from
quantum experiments to quantum accelerators.

I. THE NEED FOR A UNIFIED SOFTWARE STACK

As quantum computing systems mature and move from
laboratories to production computing environments, we must
also develop the needed software environments [1]. This is
especially important, as it is expected that quantum systems
will be part of larger quantum/classic workflows and will serve
as accelerators for targeted problems. In such scenarios, the
user community will shift from individual physics experts
accessing individual quantum computing systems (typically
in lab environments) to a wide range of domain users, not
intimately familiar with quantum mechanics (as sketched in
Figure 1). Such users want to use quantum systems without
knowing the physical details and potentially will also want to
target multiple different quantum systems.

This transition from single experiments to production-ready
classic/quantum hybrid environments can only be accom-
plished by deploying a comprehensive software stack that
addresses the following challenges.

• It must be able to broaden the user community: instead
of individual quantum physicists, it must be usable by
domain users from varying backgrounds and fields, and
it must be able to support novel quantum algorithms.

• It must provide higher-level and easier-to-use abstractions
for programming: this will enable easier access for new,
non-physics users as well as enable new optimizations.

Fig. 1. Transforming access to quantum systems.

• It must be integrated into High Performance Comput-
ing (HPC) systems: quantum systems are suitable for
accelerating very targeted problems, while the remaining
computation requires classic HPC systems. Further, as
we scale QC systems, we require significant compute
power to drive QC systems and their needed compilation,
topology optimization, and (ultimately) correction.

• It must be accessible from HPC systems: as the conse-
quence of using QC systems as accelerators, their usage
will be through HPC systems, which must be supported
with new hybrid programming approaches and tooling.
Further, the quantum software stack must match the
compute environments of HPC systems.

• It must provide extensive design automation and software
tools that enable large scale systems and applications:
most tasks are complex and cannot be handled manually
anymore—requiring a high degree of automation and
corresponding data-structures as well as core methods.
In order to get that, we should employ the extensive
experience available from classical design automation.

These observations have led to several groups working in
this direction, including large scale efforts like IBM Qiskit [2],
in the Quantum Delta [3] or the RIKEN software efforts 1.
However, most efforts either focus on quantum computing only
and de-emphasize the needed integration with HPC, rely on
quick prototyping but non-scalable solutions, or target indi-

1https://www.riken.jp/en/research/labs/rqc/

https://www.riken.jp/en/research/labs/rqc/


Fig. 2. The Munich Quantum Software Stack at a glance.

vidual systems. Other projects offer approaches for a subpart
of these questions, like XACC [4] for hybrid programming,
but miss a larger integration towards a true full stack HPCQC
workflow from user to backend execution.

II. THE MUNICH QUANTUM SOFTWARE STACK

In the Munich Quantum Valley (MQV)2, we are addressing
these challenges in a holistic and full-stack manner, by devel-
oping a dedicated quantum software stack that supports direct
access for experiments, integration with HPC systems, and
driving implicit quantum compilation as well as optimization
toolkits which, eventually, enable multiple backends.

Our approach is sketched in Figure 2. Users can access the
system either via a dedicated portal with multiple language
backends (top left) or via HPC systems using traditional
schedulers like SLURM (bottom left), which drive hybrid
applications capable of offloading parts of their computation
to QC backends. The relevant parts of the programs are
then processed via a quantum resource manager as well
as corresponding quantum design tools (top-right), including
those from the Munich Quantum Toolkit (MQT)3. Finally, the
resulting quantum circuits are executed by a suitable backend
system (bottom right). This workflow is transparent for the
user, hides the particular complexities, and still enables “expert
paths” for experimental computations.

III. STATUS AND NEXT STEPS

The presented software stack is currently being developed
within the Munich Quantum Valley and deployed at the

2https://www.munich-quantum-valley.de/
3https://www.cda.cit.tum.de/research/quantum/mqt/

Leibniz Supercomputing Centre via its Quantum Integration
Centre (QIC). A first prototype has been tested using LRZ’s
5 Qubit superconducting system, which has been installed in
a collaboration between LRZ and IQM. Next steps include
the integration of further toolkits and compiler optimizations,
the development of more sophisticated scheduling techniques,
as well as new higher-level programming abstraction. With
that, the Munich Quantum Software Stack will form the
foundation for efficient, production-level full-stack HPCQC-
enabled quantum computing.

ACKNOWLEDGMENT

This research is part of the Munich Quantum Valley (MQV),
and is supported by the Bavarian state government with funds
from the Hightech Agenda Bayern as well as several projects
funded by the Federal Ministries for Economic Affairs and
Climate Action and the Education and Research.

REFERENCES

[1] M. Schulz, M. Ruefenacht, D. Kranzlmüller, and L. B. Schulz,
“Accelerating hpc with quantum computing: It is a software challenge
too,” Computing in Science & Engineering, vol. 24, no. 4, pp. 60–64,
2022. [Online]. Available: https://doi.org/10.1109/MCSE.2022.3221845

[2] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim,
D. Bucher, F. J. Cabrera-Hernández, J. Carballo-Franquis, A. Chen,
C.-F. Chen et al., “Qiskit: An open-source framework for quantum
computing,” 2019. [Online]. Available: https://qiskit.org/

[3] X. Fu, L. Riesebos, L. Lao, C. Almudever, F. Sebastiano, R. Versluis,
E. Charbon, and K. Bertels, “A heterogeneous quantum computer archi-
tecture,” 05 2016, pp. 323–330.

[4] A. J. McCaskey, D. I. Lyakh, E. F. Dumitrescu, S. S. Powers,
and T. S. Humble, “XACC: a system-level software infrastructure
for heterogeneous quantum–classical computing,” Quantum Science
and Technology, vol. 5, p. 024002, 2020. [Online]. Available:
https://doi.org/10.1088/2058-9565/ab6bf6

https://www.munich-quantum-valley.de/
https://www.cda.cit.tum.de/research/quantum/mqt/
https://doi.org/10.1109/MCSE.2022.3221845
https://qiskit.org/
https://doi.org/10.1088/2058-9565/ab6bf6

	The Need for a Unified Software Stack
	The Munich Quantum Software Stack
	Status and Next Steps
	References

