
Extended Abstract for the First International Workshop on Integrating High-Performance and Quantum Computing

qbOS: a Python framework for the development of
coprocessing quantum-classical applications
Seyed N. Saadatmand

Quantum Brilliance Pty Ltd
Canberra, ACT, Australia

publications@quantum-brilliance.com

Simon Yin
Quantum Brilliance Pty Ltd
Sydney, NSW, Australia

publications@quantum-brilliance.com

Michael L. Walker
Quantum Brilliance Pty Ltd
Sydney, NSW, Australia

publications@quantum-brilliance.com

Marcus W. Doherty
Quantum Brilliance Pty Ltd
Canberra, ACT, Australia

publications@quantum-brilliance.com

Maciej Cytowski
Pawsey Supercomputing Research Centre

Kensington, WA, Australia
maciej.cytowski@pawsey.org.au

Ugo Varetto
Pawsey Supercomputing Research Centre

Kensington, WA, Australia
ugo.varetto@pawsey.org.au

Abstract—Over the last decade, the quantum software and
hybrid programming landscape have seen significant progress:
high-level language libraries now support a broad range of
quantum hardware, scalable classical simulators have appeared,
and assembly languages and compilers are approaching maturity.
Most notably, the development of XACC, a hardware-agnostic
hybrid programming framework, has opened the door for build-
ing unique user interfaces, supporting virtually all backends and
integration with existing HPC infrastructure. In this proceeding,
we introduce qbOS, Quantum Brilliance’s XACC-based Python
application development framework, which is optimized for the
diamond quantum accelerator architecture. On qbOS, developers
can build, run, and estimate the runtime of their quantum
applications by connecting to third-party classical or Quantum
Brilliance’s scalable backends. We detail qbOS integration and
some initial performance results, identifying a quantum useful-
ness threshold, on Pawsey’s supercomputing systems.

Index Terms—Quantum Computing, Quantum Software, Hy-
brid Programming, Python, XACC, Quantum Accelerators, QPU

I. INTRODUCTION

The notable advancement in manufacturing noisy quantum
processing units (QPUs) on a variety of physical platforms [1]
and their immediate availability through cloud platforms,
such as IBM Quantum and Amazon Braket, has led to the
rapid growth of quantum software [2]. Quantum software
enables hybrid quantum-classical programming, compilation,
control, hardware runs, co-processing and simulations of de-
sired algorithms. Open-source Python software development
kits (SDKs) with access to QPUs, such as qiskit, are now
well-established in the community. Some SDKs also provide
access to efficient classical simulators from state-vector to
exa-scalable tensor network backends (for examples refer
to AER and TNQVM simulators’ documentations), enabling
circuit simulations of size 10s to 100s of qubits. These tools
have played an important role in finding quantum advantage
crossover in celebrated quantum supremacy studies [3], [4]
and present immensely valuable educational opportunities.

Fig. 1. A screenshot example from qbOS UI providing Jupyter notebooks.

Among available platforms, diamond quantum computing
[1] is distinct due to offering a pathway toward room-
temperature miniaturised QPUs. Quantum Brilliance (QB)
[5] has set a target of providing scalable NV-centre-based
PCIe-form-factor 50-qubit quantum accelerators in the next
few years, which mandates efficient quantum-classical task
management and co-processing (i.e. QPUs as heterogeneous
accelerators to HPC). The above-mentioned software tools can
no longer address the full development and testing require-
ments of such hardware. The situation greatly improved when
the open-source system-level coprocessing-model framework
of XACC [6] was introduced. Among many important features
such as high-level APIs, frontend language compilation, and
extensive backend support, XACC provides a quantum-aware
intermediate representation gluing the layers together.

In this proceeding, we introduce Quantum Brilliance Op-
erating System or qbOS, a proprietary XACC-based Python
framework. This software is available for licensing and in-
cludes R&D versions. Pawsey provides ongoing “Quantum
Pioneers” programs1 granting researchers and SMEs access to
qbOS and enabling research on quantum chemistry, finance,

1See Pawsey’s announcement. Note qbOS was formerly known as Quantum
Brilliance Quantum Emulator (QBQE for short). Documentations for the older
versions are publicly available via v1.0 and v2.0.

https://quantum-computing.ibm.com/
https://aws.amazon.com/braket/
https://qiskit.org/
https://qiskit.org/documentation/apidoc/aer.html
https://github.com/ORNL-QCI/tnqvm
https://pawsey.org.au/worlds-first-market-ready-diamond-based-quantum-accelerator-coming-to-pawsey-supercomputing-centre/
https://quantumbrilliance.notion.site/Quantum-Emulator-v1-0-User-Guide-for-command-lines-20905c04dd6b4a279cc32a528cdf7bfd
https://quantumbrilliance.notion.site/Quantum-Emulator-v2-0-User-Guide-for-Python-Jupyter-670318f9045647d598548214e84dc497

logistics, natural language processing, noise and co-processing
modelling. In developing this software, QB has employed
a variety of open-source tools, enabling efficient integration
with Pawsey’s HPC infrastructure as detailed in Sec. II. While
qbOS is built upon a C++ XACC core, it uses binding tools
to present a full-stack Python framework at the frontend: this
allows access to a wide range of Python programming func-
tions and provides programming tools to access and control
classical simulators and in upcoming versions, for QB’s QPUs.

At time of writing, the qbOS user interface (UI) can be
accessed via either Pawsey’s Nimbus or AWS cloud instances
in the form of preconfigured Docker containers providing
access to Jupyter and Python consoles as shown in Fig. 1.
This deployment model can be immediately extended to other
cloud systems or individual machines. qbOS offers a range of
unique features, some not readily available even in its parent
XACC library. For example, users can accurately estimate the
runtime of algorithms on QB’s future generation QPUs: in
addition to the runtime of the actual quantum algorithm, qbOS
accounts for the time needed to transfer the data to the QB
hardware controller and to initialise each qubit for each run
and to read each qubit at the end. We demonstrate this using
a well-known quantum algorithm in Sec. III.

II. INTEGRATION WITH PAWSEY’S SYSTEMS

qbOS was integrated with Pawsey’s HPC and cloud systems
to provide both software and services, namely

1) Introductory level: An online learning service through
Quantum Brilliance’s user acceptance testing and training
course covering the basics of XACC kernel-level pro-
gramming tools and qbOS features,

2) Intermediate level: qbOS Jupyter UI, (cf. Fig. 1) delivered
via Pawsey’s Nimbus Cloud, is a cloud service based on
OpenStack, used to serve Jupyter from containerised vir-
tual machines, and offers high-level programming tools2,

3) Advanced level: qbOS offers MPI-aware command-line
executables for advanced developers, which can run scal-
able quantum simulations using TNQVM backends. qbOS
was integrated with Singularity containers on two HPC
systems at Pawsey suitable for MPI and CUDA-aware
executions: Magnus (a Cray XC40 class system) and
Topaz (an Nvidia V100 and Infiniband capable system).

III. A QUANTUM APPLICATION DEVELOPMENT EXAMPLE

Quantum utility is the threshold where a quantum system
outperform a purely classical machine of the similar weight,
power, and size in a specific application. For certain edge
applications, quantum accelerators may need to outperform
handheld devices to become commercially useful and quantum
utility provides the right benchmark to identify this threshold.

Here we demonstrate a short Python script, available soon,
which upon running with qbOS generates comparison (see

2Most notable application here is running complex quantum instructions
through a few lines of qbOS’ high-level Python routines: e.g. “import
qbos as q; t=q.qbqe(); t.qb12; t.random=2; t.run()”
will generate and run a random 12-qubit quantum circuit with depth = 2.

Fig. 2) of the runtime of QB’s hardware to that of a crudely
similar size-weight-power Pawsey machine for the Deutsch-
Jozsa (DJ) algorithm [7] – a contrived problem where QPUs
have known exponential advantage over deterministic classical
solvers. The code is readily adaptable to other tasks. The DJ’s
oracle always implements a constant function and is wrapped
according to the simple string s = 000 Our script creates
the OpenQASM circuit required for the quantum algorithm,
classical routines, and plotting functions. We have verified
using the AER simulator of qbOS, where the simulated noise
is hard-coded to match the hardware, that the unique correct
outcome is achieved up to reported fidelity. Within such fixed
constraints and from accurate extrapolation it is clear that
QPUs can outperform the classical solver at 35 or more qubits.

Fig. 2. DJ algorithm quantum utility: runtime comparisons of a classical
algorithm (sequential querying, single-thread, Pawsey Nimbus cloud) and
estimated quantum hardware (1024 shots, upcoming QB’s PCIe-form-factor
50-qubit QPUs, simulated on Pawsey Topaz bare-metal). Green data indicate
(1−Fidelity) in-between achieved distribution and the exact one, all counts in
s, for noisy quantum simulations. The solid line is a precise linear fit to predict
the crossover due to difficulties in exact simulations. Errors are negligible.

The integration of qbOS with Pawsey provides a complete
quantum computing service: this allowed us to demonstrate
that a 35-qubit diamond-chip quantum accelerator outperforms
similar-size portable classical devices in DJ applications.

REFERENCES

[1] Nathalie P. De Leon et al., “Materials challenges and opportunities for
quantum computing hardware,” Science, vol. 372, no. 6539, April 2021.

[2] David Matthews, “How to get started in quantum computing,” Nature
591, 166-167 (2021).

[3] Frank Arute et al., “Quantum supremacy using a programmable super-
conducting processor”, Nature 574, 505-510 (2019).

[4] Yulin Wu et al., “Strong quantum computational advantage using a
superconducting quantum processor,” arXiv:2106.14734 pre-print (2021).

[5] Maurizio Di Paolo Emilio, “Synthetic Diamond Technology Could Make
Quantum Practical”, EET ASIA, March 2021.

[6] Alexander J. McCaskey, Dmitry I. Lyakh, Eugene F. Dumitrescu,
Sarah S. Powers, Travis S. Humble, “XACC: A System-Level Soft-
ware Infrastructure for Heterogeneous Quantum-Classical Computing,”
arXiv:1911.02452 pre-print, November 2019 [Documentation available at
https://xacc.readthedocs.io/].

[7] David Deutsch and Richard Jozsa, ”Rapid solutions of problems by
quantum computation,” Proceedings of the Royal Society of London A.
439 (1907): 553–558, 1992.

https://quantumbrilliance.thinkific.com/courses/qb-quantum-emulator
https://quantumbrilliance.thinkific.com/courses/qb-quantum-emulator
https://science.sciencemag.org/content/372/6539/eabb2823
https://doi.org/10.1038/d41586-021-00533-x
https://doi.org/10.1038/s41586-019-1666-5
https://arxiv.org/abs/2106.14734
https://www.eetasia.com/synthetic-diamond-technology-could-make-quantum-practical/
https://arxiv.org/abs/1911.02452
https://xacc.readthedocs.io/
https://doi.org/10.1098%2Frspa.1992.0167

	Introduction
	Integration with Pawsey's systems
	 A quantum application development example
	References

